a2 United States Patent

Chambliss et al.

US009053141B2

US 9,053,141 B2
Jun. 9, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SERIALIZATION OF ACCESS TO DATA IN
MULTI-MAINFRAME COMPUTING
ENVIRONMENTS

Inventors: David D. Chambliss, Morgan Hill, CA
(US); Joshua W. Knight, Mohegan
Lake, NY (US); Ronald K.
Kreuzenstein, Sunnyvale, CA (US);
John J. Lee, Scotts Valley, CA (US);
Nicholas C. Matsakis, Poughkeepsie,
NY (US); James A. Ruddy, San Jose,
CA (US); John G. Thompson, Tucson,
AZ (US); Harry M. Yudenfriend,
Pouighkeepsie, NY (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 13/285,768

Filed: Oct. 31, 2011
Prior Publication Data
US 2013/0111026 Al May 2, 2013
Int. CI.
GOGF 15/16 (2006.01)
GOGF 15/173 (2006.01)
GOGF 17/30 (2006.01)
U.S. CL
CPC e GOG6F 17/30362 (2013.01)
Field of Classification Search
CPC i GOG6F 17/30;, GO6F 17/30091
USPC o 709/225, 224, 246

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,847,754 A 7/1989 Obermarck et al.
5,319,782 A 6/1994 Goldberg et al.
5,850,426 A 12/1998 Watkins et al.
5,926,833 A 7/1999 Rasoulian et al.
6,173,360 Bl 1/2001 Beardsley et al.
7,065,765 B2 6/2006 Cadden et al.
7,219,198 B2 5/2007 Sivaram et al.
7,836,228 Bl 11/2010 Moir et al.
7,839,875 B1* 11/2010 Masputraetal. 370/412
(Continued)
FOREIGN PATENT DOCUMENTS
WO 2010089222 Al 8/2010
WO 2012158890 A1 11/2012
OTHER PUBLICATIONS

Hasu, Tero, 2002. “Implementing Jini Servers without Object Seri-
alization Support” Retrieved on Aug. 29, 2013 from <terohasu.net/
jini.pdf>*

(Continued)

Primary Examiner — Brian] Gillis

Assistant Examiner — Juan C Turriate Gastulo

(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
William A. Kinnaman, Jr.

(57) ABSTRACT

A multi-mainframe operating system serialization method
can include receiving, in a first computing system, a request to
access a data set on behalf of a first peer application, sending,
in the first computing system, a notification to a second peer
application to obtain a normal enqueue, in response to the
second peer application obtaining the normal enqueue,
obtaining, in the first computing system, a first rider enqueue
for the data set and sending, in the first computing system, a
communication to peer instances to obtain additional rider
enqueues for the data set, the additional rider enqueues cor-
responding to the first rider enqueue.

9 Claims, 3 Drawing Sheets

103

US 9,053,141 B2

Page 2
(56) References Cited 2012/0005763 Al 1/2012 Stefik et al.
2012/0030070 Al* 2/2012 Kelleretal.cccocceeneeen 705/28
U.S. PATENT DOCUMENTS 2012/0096078 Al* 4/2012 Coates etal. 709/203
2012/0151063 Al* 6/2012 Yangetal.cccccoevneee. 709/226
8,131,860 B1* 3/2012 Wongetal. ..o, 709/228 2012/0174191 AL~ 7/2012 Wood
8,161,330 Bl 4/2012 Vannatter et al. 2013/0054803 Al* 2/2013 Shepardetal. 709/225
8,170,968 B2 5/2012 Colclough et al. 2013/0085985 Al* 4/2013 Maxfieldcccocovvennene 707/609
2001/0010053 Al* 7/2001 Ben-Shacharetal. 709/105
2003/0208706 Al 11/2003 Roddy etal. OTHER PUBLICATIONS
%883;8528%25 ﬁ} % 1;;3883 é{::: detal oo 710/200 Gaitonde et al., “Model and Architecture for Diagnostic Requests in
2006/0047828 Al* 3/2006 Dearing et al. 709/229 a Heterogeneous Distributed Environment”, IP.com
2006/0059228 Al* 3/2006 Kasamsetty et al. .. 709/203 IPCOMO000122033D, Apr. 4, 2005, pp. 1-7.
2007/0150595 Al* 6/2007 Bhorania et al. ... 709/226 Disclosed Anonymously, “Avoidance of working storage stack data
2007/0162449 Al* 7/2007 Manolov et al. . 707/8 diagnostic information invalidation when handling an error condition
2008/0189352 Al1* 82008 Mitchelletal. . . 7097201 or gathering First Failure Data Capture information”, IP.com
2008/0215767 Al 9/2008 Nagami et al. IPCOMO00019489D, Apr. 12, 2010, pp. 1-4.
2008/0313416 Al* 12/2008 Frondozo etal. 7117162 IBM; “ITCAM Agent for WebSphere Application: Configuring and
2009/0217103 Al 8/2009 Borelli et al. using TTAPI”; IBM Tivoli Composite Application Manager for
2009/0222599 Al 9/2009 Lehr et al. Application Di tics. Version 7.1.0.1: 2009-2010: 46
2010/0023521 Al 1/2010 Arcese et al. pplication LIagnostics, version 7.5 1; » 49 pes:
2010/0228789 Al 9/2010 Macedo Combined Search and Examination Report under Sections 17 and
2010/0275203 Al 10/2010 Shinohara et al. 18(3) for GB Application No. GB1216252.5 mailed Jan. 8, 2013, 5
2010/0287554 Al 11/2010 Amundsen et al. pgs.
2010/0306394 Al 12/2010 Brown et al. International Search Report and Written Opinion for International
2010/0313208 Al 12/2010 Zarzycki et al. Application No. PCT/IB2012/055499 mailed Jan. 29, 2013, 6 pgs.
2010/0332776 Al* 12/2010 Uchikadoetal. 711/162 Abstract of Japanese Publication No. JP2000322306 A, Publication
2011/0061093 Al 3/2011 Korkus et al. Date: Nov. 24, 2000; Applicant: Fujitsu Ltd, 1 pg.
2011/0099166 Al1* 4/2011 Mugundan et al. 707/736 Abstract of Japanese Publication No. JP2000311063 A, Publication
2011/0208798 Al 8/2011 Murrell et al. Date: Nov. 7, 2000 Applicant: Hitachi Ltd, 1 pg.
2011/0225373 Al* 9/2011 Ttoetal. ... 711/145
2011/0252173 Al 10/2011 Armstrong et a * cited by examiner

US 9,053,141 B2

Sheet 1 of 3

Jun. 9, 2015

U.S. Patent

N SRR RN

TITITITI V77,

e NeN _ \ —
m >~-10)
o f Gl e

\

il

A\ %
Glboo9 0

W

€01

U.S. Patent Jun. 9, 2015 Sheet 2 of 3 US 9,053,141 B2

200

(START)

Y

205~ REQUESTACCESSTO
DATA SET

Y

20~] PASS REQUEST

Y

215~ SEND NOTIFICATION

Y

220~ OPEN THE DATASET

Y

225~ 0BTAIN RIDER ENQUEUES

\

i
230~ COMPLETEACCESSTO
THE DATASET

\

235~ COMPLETE PROCESS

Y

¢ STOP)
FIG. 2

US 9,053,141 B2

340

/

A\

QUTPUT
DEVICE

350"

FIG.

3

U.S. Patent Jun. 9, 2015 Sheet 3 of 3
300
4 330
310
\
305~ DISPLAY 1325
01 < PROCESSOR CONTROLLER
320~ MEMORY 4315
STORAGE MEMORY CONTROLLER
133
360~0 NETWORK INPUT/OUTPUT
INTERFACE 0S | CONTROLLER
/' A
\ 31 % Y
- 355

US 9,053,141 B2

1
SERIALIZATION OF ACCESS TO DATA IN
MULTI-MAINFRAME COMPUTING
ENVIRONMENTS

BACKGROUND

The present invention relates to multi-mainframe comput-
ing systems, and more specifically, to systems and methods
for serialization of access to data resources in multi-main-
frame or heterogeneous computing environments.

In a typical multi-mainframe computing environment, a
mainframe can include multiple servers. For example, in a
System z hybrid environment, an IBM® System z mainframe
(e.g. zEnterprise® 196) is coupled to IBM® blades housed in
one or more IBM® BladeCenter® instances. The coupling is
accomplished by Ethernet networks via Transmission Con-
trol Protocol/Internet Protocol (TCP/IP). If any data needs to
be transferred from the mainframe to a server, the data passes
over the Ethernet network. Applications involving high vol-
ume and high speed data transfers, such as database accesses
(e.g., via Direct Access Storage Devices (DASD)) within the
multi-mainframe computing environment can include con-
siderable processing that may impact other work in a main-
frame.

With a suitable channel implementation on the server coor-
dinating the data transfers, it is possible for the server and
mainframe to share access to the same database storage
devices (e.g., DASD). As such, the server can directly access
the data and load the data without requiring much mainframe
processing or transfer over the Ethernet network.

In multi-mainframe operating systems that manage con-
currently hosted units of work, serialization (e.g., Global
Resource Serialization (GRS)) is a mechanism that ensures
that multiple conflicting accesses to a data set are serialized so
that the integrity of the data is preserved. For example, if
multiple users were allowed to update the same data set at the
same time, data corruption could occur. Serialization allows
users that update a data set to obtain exclusive access to the
data set while they are updating it. However, sometimes there
are servers that are not part of the multi-mainframe operating
system, but still do access a common database shared
between the multi-mainframe operating system servers and
the external computers. In such a case, the serialization ser-
vice chosen to be used by the resource owner on the multi-
mainframe operating system may not be available to the
external servers. In this situation there is no way to serialize
accesses to data set resources among programs running on the
multi-mainframe operating systems and programs running
simultaneously on the external server operating systems.

SUMMARY

Exemplary embodiments include a multi-computing sys-
tem serialization method, including receiving, in a first com-
puting system, a request to access a data set on behalf of a first
peer application, sending, in the first computing system, a
notification to a second peer application to obtain a normal
enqueue, in response to the second peer application obtaining
the normal enqueue, obtaining, in the first computing system,
a first rider enqueue for the data set and sending, in the first
computing system, a communication to peer instances to
obtain additional rider enqueues for the data set, the addi-
tional rider enqueues corresponding to the first rider enqueue.

Additional exemplary embodiments include a computer
program product including a non-transitory computer read-
able medium storing instructions for causing a computer to
implement a multi-mainframe operating system serialization

10

30

40

45

50

55

2

method. The method can include receiving, in a first comput-
ing system, a request to access a data set on behalf of a first
peer application, sending, in the first computing system, a
notification to a second peer application to obtain a normal
enqueue, in response to the second peer application obtaining
the normal enqueue, obtaining, in the first computing system,
a first rider enqueue for the data set and sending, in the first
computing system, a communication to peer instances to
obtain additional rider enqueues for the data set, the addi-
tional rider enqueues corresponding to the first rider enqueue.

Further exemplary embodiments include a multi-main-
frame system, including a first server mainframe, a second
server mainframe, wherein the first and second mainframes
are part of a logical system, a server communicatively
coupled to the first and second server mainframes, a data set
accessible by the first and second mainframes and the server
and a process residing on at least one of the first and second
server mainframes, the process configured to access the data
set with serialization on behalf the server.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 illustrates an exemplary system for serialization of
access to data resources;

FIG. 2 illustrates a flow chart of a method 200 for serial-
ization of access to a data set in accordance with exemplary
embodiments; and

FIG. 3 illustrates an exemplary embodiment of a system
that can be implemented to serialize access to data among
systems that support data serialization and systems that do not
support serialization in a multi-mainframe environment.

DETAILED DESCRIPTION

In exemplary embodiments, the systems and methods
described herein serialize access to data among systems that
support data serialization and systems that do not support
serialization in a multi-mainframe environment. FIG. 1 illus-
trates an exemplary system 100 for serialization of access to
data resources. The system 100 includes a first multi-main-
frame configuration 105 and a second multi-mainframe con-
figuration 150. In exemplary embodiments, the multi-main-
frame configurations 105, 150 manage one or more
mainframes or other computing systems that each support
differing operating systems via a management interface 103.
For example, the first multi-mainframe configuration 105 can
include a first server mainframe 110 having one or more
server modules 115. In the examples described herein, the
server modules run an operating system that can support
multiple workloads (e.g., zZ/OS). The first multi-mainframe
configuration 105 can further include an additional server 120
having a computing system 125 that runs an operating system
(e.g., Linux) differing from the operating system running on
the server modules 115 in the first server mainframe 110. The

US 9,053,141 B2

3

second multi-mainframe configuration 150 can include a sec-
ond server mainframe 155 having one or more server modules
160. In the examples described herein, the server modules run
an operating system that can support multiple workloads
(e.g., Z/OS). The second multi-mainframe configuration 150
can further include an additional server 165 having a com-
puting system 170 that runs an operating system (e.g., Linux)
differing from the operating system running on the server
modules 115 in the first server mainframe 110 and the oper-
ating system running on the server module 160 in the second
server mainframe 155.

In exemplary embodiments, the first and second main-
frames 110, 155 may be a part of a single logical system (e.g.,
a Parallel Sysplex® configuration) 101 in which the first and
second mainframes 110, 155 act together as a single system
combining data sharing and parallel computing, for example.
As such, the server modules 115, 160 can operate as a single
unit within their respective server mainframes 110, 155. The
operating systems running on the server modules 115, 160
(e.g., ZOS®) can support various components such as seri-
alization that enables fair access to serially reusable comput-
ing resources, such as datasets and tape drives or virtual
resources, such as lists, queues, and control blocks. Programs
residing on the server modules 115, 160 can request exclusive
access to a resource (which means that program and all sub-
sequent requesting programs are blocked until that program is
given access to the resource), usually requested when a pro-
gram needs to update the resource or shared access (which
means that multiple programs can be given access to the
resource), usually requested when a program only needs to
query the state of the resource. Serialization manages all
requests in FIFO (first in/first out) order. As such, the system
100 further includes a data set 102 that is accessible by the
server modules 115, 160. It can be appreciated that the data
set 102 can reside in any suitable storage device. The respec-
tive operating systems on the server modules 115,160 imple-
ment serialization to coordinate multiple accesses to the data
set 102, preventing conflicts and preserving data integrity.
However, the additional servers 120, 165 run an operating
system (e.g., Linux®) that does not support the required
serialization. In exemplary embodiments, as described fur-
ther herein the system includes additional components to
provide serialization for the operating systems on the servers
120, 165 that do not support serialization.

In exemplary embodiments, the system 100 is a hybrid of
operating systems on the server modules 115, 160 that sup-
port serialization allowing non-conflicting controlled access
to the dataset 102, and the servers 120, 165 that do not support
serialization, which can cause conflicts and loss of data integ-
rity in the data set 102. For example, the system 100 serializes
access to the data set 102 among a program 116 running on
the server module 115 and programs 121 running simulta-
neously on the server 120. For illustrative purposes the single
program 116 on the server module 115 and the single program
121 on the server 120 are discussed. It can be appreciated that
other programs on the other server modules and servers
described herein are contemplated. As such, before the data
102 set is accessed by an application program running on the
server 120, the corresponding application program, running
on one of the server modules 115, obtains a serialization
component (e.g., enqueues in ZOS®) on behalf of the pro-
gram 121 running on the server 120. For illustrative purposes
and ease of discussion, the serialization components are
referred to as enqueues herein.

The program 121 running on one of the servers 120 runs
under the protection of the enqueues obtained by the server
module 115. In addition, another enqueue called a rider

10

15

20

25

30

35

40

45

50

55

60

65

4

enqueue allows new requesters to also become owners of an
outstanding enqueue within the logical system 101. The
enqueue is not released until the original owner and all rider
enqueue owners have released their interest (dequeued) in the
serialization component. As the rider enqueues immediately
become owners of the targeted owned enqueue, they are not
blocked by any waiting enqueues that were issued after the
original normal enqueue. In exemplary embodiments, rider
enqueues are obtained by programs running on each of the
server mainframes 110, 155 in the logical system 101 in order
to provide continued protection for the program 121 running
on the server 120 in the event that the original server module
115, which first obtained enqueues on behalf of the program
121 running on the server 120, goes down and loses the
serialization that it obtained.

In exemplary embodiments, the system 100 can further
include an application layer that facilitates the operation of
the program 116 running on the server module 115 and its
corresponding program 121 running on the server 120. In
exemplary embodiments, there is an instance 171, 172 of the
application layer running on each of the server modules 115,
160 in the logical system 101 and an instance 173 running on
the sever 120. It can be appreciated that other instances can be
running on other components on the system 100 such as the
server 165 as well.

The instances 171, 172, 173 of the application layer func-
tion in conjunction with the rider enqueue as further
described herein. In exemplary embodiments, the rider
enqueue targets the enqueue to be “ridden” by providing the
same enqueue identity (major name, minor name, and scope)
as the corresponding normal enqueue. An attempt to obtain a
rider enqueue fails if the corresponding normal enqueue is not
currently held. Rider enqueues function to ride an outstanding
normal enqueue. If the enqueue is not held, the rider enqueue
does not ride the enqueue. In addition, during an attempt to
obtain a normal enqueue, existing contention rules are fol-
lowed and currently held rider enqueues have the same effect
as currently held normal enqueues. Therefore, an attempt to
obtain a normal enqueue succeeds unless one of the following
conditions exist: 1) The normal enqueue being obtained is a
shared enqueue and there are outstanding exclusive rider
enqueue and/or normal enqueues; 2) The normal enqueue
being obtained is an exclusive enqueue and there are out-
standing rider enqueues and/or normal enqueues of any type
(shared or exclusive). In addition, during an attempt to obtain
a rider enqueue, the following contention rules are followed:
1) If the rider enqueue being obtained is a shared enqueue, the
attempt succeeds unless there are outstanding exclusive rider
enqueues and/or normal enqueues; and 2) [fthe rider enqueue
being obtained is an exclusive enqueue, the attempt succeeds
unless there are outstanding shared rider enqueues and/or
normal enqueues. An attempt to obtain an exclusive rider
enqueue succeeds if there are outstanding exclusive rider
enqueues and/or normal enqueues and any number of exclu-
sive rider enqueue can be held concurrently. In addition, a
dequeue by the original normal enqueue owner does not
remove any rider enqueue owners. All owners including rider
enqueues must dequeue before the resource (i.e., the data set
102) is no longer owned or held.

In FIG. 1, the programs 116 in the first server mainframe
110 and the program 121 running on the server 120 can be
considered hybridized or hybrid portions of a single program.
The programs 116 run in the server modules 115 that have
operating systems that are coupled to other operating systems
(e.g., the operating systems running on the server modules
160) in the logical system 101 (e.g., a Parallel Sysplex®
configuration), which includes the serialization components

US 9,053,141 B2

5

(e.g., GRS). The server mainframes 110, 155 in the logical
system 101 and the server 120 all share the data set 102 that
includes the multi-mainframe operating system (e.g., ZOS®)
data that is also to be accessed by the portion of the hybrid
program, the program 121, which does not support serializa-
tion as described herein.

FIG. 2 illustrates a flow chart of a method 200 for serial-
ization of access to the data set 102 in the system 100 in
accordance with exemplary embodiments. In exemplary
embodiments, when the program 121 is ready to access the
multi-mainframe operating system data set 102, the program
121 calls the application layer instance 173 running on the
respective operating system (e.g., Linux) at block 205. At
block 210, the instance 173 passes the request to the applica-
tion layer instance 171 running on the server modules 115,
where the other portion of the hybrid program, the program
116, is running. The instance 171 notifies the program 116
that the program 121 (i.e., the counterpart of the program 116)
on the server 120 is ready to access the data set 102 at block
215.

In exemplary embodiments, at block 220, the program 116
opens the data set 102, which includes obtaining normal
enqueues to properly protect the process running on the server
120 as the server 120 accesses the data set 102. For example,
if the program 121 is going to update the data set 102, the
serialization can include an exclusive enqueue with a major
name of “SYSDSN,” a minor name equal to the data set name,
and a scope of “SYSTEMS”.

When the program 116 returns to the instance 171, at block
225, the instance 171 obtains rider enqueues to the normal
enqueues obtained during open processing and then commu-
nicates with peer instances (e.g., the instance 172) of the
instance 171 running on the other operating systems in the
logical system 101 to have them obtain the same rider
enqueues for the data set 102. As part of this communication,
the calling instance 171 passes all of the information needed
for the other instances of the instance 171 to obtain the proper
rider enqueues. This information includes at least the name
and type of the data set 102 being accessed and the type of
access being used. As such, in the present example, all the
instances of the instance 171 would each raise a rider enqueue
with a major name of “SYSDSN,” a minor name equal to the
data set name, and a scope of “SYSTEMS.”

As part of this same communication, the calling instance
171 also passes the information to the other instances of the
instance 171 (e.g., instance 172) that they need to communi-
cate with the instance 173 running on the server 120 to deter-
mine whether or not the program 121 is still running on the
server 120. This information may include the TCP/IP address
and port of the instance 173 and an identifier of the program
121 running on the server 120.

Once all of the instances of the instance 171 have obtained
their rider enqueues, the instance 171 running on the server
115 with the program 116 can return to the instance 173 and
the instance 173 can return to the program 121, which can
begin accessing the data set 102. When the program 121
finishes accessing the data set 102, a similar process takes
place to release the serialization: The program 121 invokes
the instance 173, which in turn invokes the instance 171
running on the server module 115, which is running the pro-
gram 116. At block 230, the instance 171 releases its rider
enqueues and calls all of the other instances of the instance
171 and they release the rider enqueues that they previously
obtained. The instance 171 then calls the program 116 and the
program 116 releases its normal enqueues for the data set 102
as well. Control then returns back to the program 121 for
further clean up and/or process completion at block 235.

10

15

20

25

30

35

40

45

50

55

60

65

6

The purpose of the rider enqueues by peers of the instance
171 on server mainframes and server modules in the logical
system 101 is to protect the program 121 as it accesses the
data set 102 in the event that the server module 115 where the
corresponding instance of the program 121 is running
crashes, causing the serialization held by the server module
115 on behalf of the program 121 to be lost. The purpose of
the instance 171 rider enqueues on the operating system
where the hybrid application (e.g., the program 116) serial-
ized the data set 102, is to protect the program 121 in the event
that the program 116 fails in such a way that Close termina-
tion processing releases the corresponding enqueues previ-
ously obtained by the program 116 before the instance 171
has a chance to terminate the program 121. If such an event
were to occur and the rider enqueues were not held, other
programs running on the other mainframe server operating
systems could gain access to the data set while it is still being
accessed by the program 121, which introduces a number of
exposures. One such exposure would be if an unrelated pro-
gram running on one of the surviving mainframe operating
systems were to open the data set 102 for update access.
Without the rider enqueues, the enqueues raised by the unre-
lated program would succeed and the program could begin
updating the same data that the program 121 is updating,
resulting in a corruption of the data in the data set 102.

To continue with the aforementioned example, the enqueue
raised by the unrelated program would include a normal
exclusive enqueue with a major name of “SYSDSN,” a minor
name equal to the data set name, and a scope of SYSTEMS.
This enqueue would succeed and allow the unrelated program
to update the data set if the rider enqueues were not held. With
the rider enqueues in place, the enqueue attempted by the
unrelated program will fail or be blocked preventing the unre-
lated program from accessing the data set until the data set is
truly available for its use.

If the mainframe operating system where the program 116
is running crashes while the program 121 is still running, the
instances of the instance 171 running on the other operating
systems (e.g., the instance 172) recognize the failure. The
other instances of the instance 171 then communicate with
the instance 173 until it has also recognized the failure and
terminated the program 121 process on the server 120. At that
point, the other instances of the instance 171 know that it is
safe to release their rider enqueues to allow other programs to
access the data set 102.

The server modules 115, 160 and servers 120, 165 can be
any suitable computing system as now described. FIG. 3
illustrates an exemplary embodiment of a system 300 that can
be implemented to serialize access to data among systems
that support data serialization and systems that do not support
serialization in a multi mainframe environment. The methods
described herein can be implemented in software (e.g., firm-
ware), hardware, or a combination thereof. In exemplary
embodiments, the methods described herein are implemented
in software, as an executable program, and is executed by a
special or general-purpose digital computer, such as a per-
sonal computer, workstation, minicomputer, or mainframe
computer. The system 300 therefore includes general-pur-
pose computer 301.

In exemplary embodiments, in terms of hardware architec-
ture, as shown in FIG. 3, the computer 301 includes a proces-
sor 305, memory 310 coupled to a memory controller 315,
and one or more input and/or output (I/O) devices 340, 345 (or
peripherals) that are communicatively coupled via a local
input/output controller 335. The input/output controller 335
can be, but is not limited to, one or more buses or other wired
or wireless connections, as is known in the art. The input/

US 9,053,141 B2

7

output controller 335 may have additional elements, which
are omitted for simplicity, such as controllers, buffers
(caches), drivers, repeaters, and receivers, to enable commu-
nications. Further, the local interface may include address,
control, and/or data connections to enable appropriate com-
munications among the aforementioned components.

The processor 305 is a hardware device for executing soft-
ware, particularly that stored in memory 310. The processor
305 can be any custom made or commercially available pro-
cessor, a central processing unit (CPU), an auxiliary proces-
sor among several processors associated with the computer
301, a semiconductor based microprocessor (in the form of a
microchip or chip set), a macroprocessor, or generally any
device for executing software instructions.

The memory 310 can include any one or combination of
volatile memory elements (e.g., random access memory
(RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvola-
tile memory elements (e.g., ROM, erasable programmable
read only memory (EPROM), electronically erasable pro-
grammable read only memory (EEPROM), programmable
read only memory (PROM), tape, compact disc read only
memory (CD-ROM), disk, diskette, cartridge, cassette or the
like, etc.). Moreover, the memory 310 may incorporate elec-
tronic, magnetic, optical, and/or other types of storage media.
Note that the memory 310 can have a distributed architecture,
where various components are situated remote from one
another, but can be accessed by the processor 305.

The software in memory 310 may include one or more
separate programs, each of which comprises an ordered list-
ing of executable instructions for implementing logical func-
tions. In the example of FIG. 3, the software in the memory
310 includes the serialization methods described herein in
accordance with exemplary embodiments and a suitable oper-
ating system (OS) 311. The OS 311 essentially controls the
execution of other computer programs, such the serialization
systems and methods as described herein, and provides
scheduling, input-output control, file and data management,
memory management, and communication control and
related services.

The serialization methods described herein may be in the
form of a source program, executable program (object code),
script, or any other entity comprising a set of instructions to be
performed. When a source program, then the program needs
to be translated via a compiler, assembler, interpreter, or the
like, which may or may not be included within the memory
310, so as to operate properly in connection with the OS 311.
Furthermore, the serialization methods can be written as an
object oriented programming language, which has classes of
data and methods, or a procedure programming language,
which has routines, subroutines, and/or functions.

In exemplary embodiments, a conventional keyboard 350
and mouse 355 can be coupled to the input/output controller
335. Other output devices such as the /O devices 340, 345
may include input devices, for example but not limited to a
printer, a scanner, microphone, and the like. Finally, the I/O
devices 340, 345 may further include devices that communi-
cate both inputs and outputs, for instance but not limited to, a
network interface card (NIC) or modulator/demodulator (for
accessing other files, devices, systems, or a network), a radio
frequency (RF) or other transceiver, a telephonic interface, a
bridge, a router, and the like. The system 300 can further
include a display controller 325 coupled to a display 330. In
exemplary embodiments, the system 300 can further include
a network interface 360 for coupling to a network 365. The
network 365 can be an IP-based network for communication
between the computer 301 and any external server, client and
the like via a broadband connection. The network 365 trans-

40

45

50

8

mits and receives data between the computer 301 and external
systems. In exemplary embodiments, network 365 can be a
managed [P network administered by a service provider. The
network 365 may be implemented in a wireless fashion, e.g.,
using wireless protocols and technologies, such as WiFi,
WiMax, etc. The network 365 can also be a packet-switched
network such as a local area network, wide area network,
metropolitan area network, Internet network, or other similar
type of network environment. The network 365 may be a fixed
wireless network, a wireless local area network (LAN), a
wireless wide area network (WAN) a personal area network
(PAN), a virtual private network (VPN), intranet or other
suitable network system and includes equipment for receiv-
ing and transmitting signals.

Ifthe computer 301 is a PC, workstation, intelligent device
or the like, the software in the memory 310 may further
include a basic input output system (BIOS) (omitted for sim-
plicity). The BIOS is a set of essential software routines that
initialize and test hardware at startup, start the OS 311, and
support the transfer of data among the hardware devices. The
BIOS is stored in ROM so that the BIOS can be executed
when the computer 301 is activated.

When the computer 301 is in operation, the processor 305
is configured to execute software stored within the memory
310, to communicate data to and from the memory 310, and to
generally control operations of the computer 301 pursuant to
the software. The serialization methods described herein and
the OS 311, in whole or in part, but typically the latter, are
read by the processor 305, perhaps buftered within the pro-
cessor 305, and then executed.

When the systems and methods described herein are imple-
mented in software, as is shown in FIG. 3, the methods can be
stored on any computer readable medium, such as storage
320, for use by or in connection with any computer related
system or method.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

US 9,053,141 B2

9

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program

10

15

20

25

30

35

40

45

50

55

60

65

10

products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

In exemplary embodiments, where the serialization meth-
ods are implemented in hardware, the serialization methods
described herein can implemented with any or a combination
of the following technologies, which are each well known in
the art: a discrete logic circuit(s) having logic gates for imple-
menting logic functions upon data signals, an application
specific integrated circuit (ASIC) having appropriate combi-
national logic gates, a programmable gate array(s) (PGA), a
field programmable gate array (FPGA), etc.

Technical effects include serializing access to data sets in
systems that support serialization from systems that do not
support serialization.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one more other features, integers, steps, operations, ele-
ment components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

The flow diagrams depicted herein are just one example.
There may be many variations to this diagram or the steps (or
operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per-
formed in a differing order or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention had been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims

US 9,053,141 B2

11

which follow. These claims should be construed to maintain
the proper protection for the invention first described.

What is claimed is:

1. A multi-computing system serialization method, com-
prising:

receiving, by a first computing system of the multi-com-

puting system, a request to access a data set on behalf of
a first peer application, wherein the first computing sys-
tem does not support serialized access to the data set;

sending, by the first computing system, a notification to a

second peer application on a second computing system
of the multi-computing system to obtain a normal
enqueue, wherein the second computing system of the
multi-computing system supports serialized access to
the data set;

in response to the second peer application obtaining the

normal enqueue, obtaining, in the first computing sys-
tem, a first rider enqueue for the data set; and

sending, in the first computing system, a communication to

peer instances to obtain additional rider enqueues for the
data set, the additional rider enqueues corresponding to
the first rider enqueue;

in response to the first peer application completing access

to the data set, releasing the rider enqueue and sending a
notification to the second peer application to release the
normal enqueue, wherein the first computing system is
given serialized access to the data set via the second
computing system in the multi-computing operation
system.

2. The method as claimed in claim 1 further comprising
releasing the rider enqueue in response to the first peer appli-
cation completing access to the data set.

3. The method as claimed in claim 2 further comprising
sending a notification to release the additional rider enqueues.

4. The method as claimed in claim 1 wherein the normal
enqueue serializes access to the data set on behalf of the first
peer application.

5. A computer program product including a non-transitory
computer readable medium storing instructions for causing a
computer to implement a multi-computing system serializa-
tion method, the method comprising:

receiving, by a first computing system of the multi-com-

puting system, a request to access a data set on behalf of
a first peer application, wherein the first computing sys-
tem of the multi-computing system does not support
serialized access to the data set;

sending, by the first computing system, a notification to a

second peer application on a second computing system
of the multi-computing system to obtain a normal
enqueue, wherein the second computing system of the
multi-computing system supports serialized access to
the data set;

in response to the second peer application obtaining the

normal enqueue, obtaining, in the first computing sys-
tem, a first rider enqueue for the data set; and

5

15

20

30

40

45

12

sending, in the first computing system, a communication to
peer instances to obtain additional rider enqueues for the
data set, the additional rider enqueues corresponding to
the first rider enqueue;

in response to the first peer application completing access

to the data set, releasing the rider enqueue and sending a
notification to the second peer application to release the
normal enqueue,

wherein the first computing system is given serialized

access to the data set via the second computing system in
the multi-computing operation system.

6. The computer program product as claimed in claim 5
wherein the method further comprises holding the rider
enqueue during a time period in which the first peer applica-
tion accesses the data set.

7. The computer program product as claimed in claim 5
wherein the method further comprises sending a notification
to release the additional rider enqueues.

8. The computer program product as claimed in claim 5
wherein the normal enqueue serializes access to the data set
on behalf of the first peer application.

9. A multi-mainframe system, comprising:

a first server mainframe;

a second server mainframe, wherein the first and second

mainframes are part of a logical system;

a server communicatively coupled to the first and second

server mainframes;

adata setaccessible by the first and second mainframes and

the server, wherein the first and second mainframes sup-
port serialized access to the data set and wherein the
server does not support serialized access to the data set;
and

a process residing on at least one of the first and second

server mainframes, the process configured to access the
data set with serialization on behalf of the server, the
process including:
sending, by a first peer application on the first server main-
frame, a notification to a second peer application on the
second server mainframe to obtain a normal enqueue;

in response to the second peer application obtaining the
normal enqueue, obtaining, in the first server main-
frame, a first rider enqueue for the data set; and

sending, by the first server mainframe, a communication to
peer instances to obtain additional rider enqueues for the
data set, the additional rider enqueues corresponding to
the first rider enqueue;

in response to the first peer application completing access

to the data set, releasing the rider enqueue and sending a
notification to the second peer application to release the
normal enqueue,

wherein the server is given serialized access to the data set

via one of the first and second mainframes.

#* #* #* #* #*

